第17章 希尔伯特

作者:付艾琳

|

类型:人物·传记

|

更新时间:2019-10-08 03:51

|

本章字节:4272字

姓名:希尔伯特


出生地:东普鲁士哥尼斯堡


生卒年:18621943年


历史评价lishipingjia


希尔伯特是对二十世纪数学有深刻影响的数学家之一。他领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。


希尔伯特,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于1930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格莱福勒奖,1942年成为柏林科学院荣誉院士。希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行


欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢于公开发表文章悼念“敌人的数学家”达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。


希尔伯特领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题。按时间顺序,他的主要研究内容有:不变式理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、“希尔伯特空间”等。


相关链接


老师在课堂上现想现推


大学的第一学期,希尔伯特选学了积分学,矩阵论和曲面的曲率论三门课。根据规定。第二学期可以转到另一所大学听课,希尔伯特选择了海德尔堡大学,这是当时德国所有大学中最讨人喜欢和最富浪漫色彩的学校。希尔伯特在海德尔堡大学选听拉撒路·富克斯的课。富克斯是微分方程方面的名家,他的名字和线性微分方程几乎成了同义语。他讲课确实与众不同,给人的印象很深。课前他不大做准备,对要讲的内容,在课堂上现想现推。于是常常发生这样的情形,某个问题在黑板上推不下去了,这时他就再想另外一种方法,有时一连要换好几种方法,但他最后总能推导出结果来。他就是这样,习惯于在课堂上把自己置于危险的境地。善于思考和学习的希尔伯特肯定会从中领悟到一个数学家是如何思考问题的,这种包括几经碰壁终于找到解法的探索过程在教科书上无论如何是看不到的。把思考问题的实际过程展现给学生看,这样做实际上是非常富于启发性的。学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。即学会思考。


在这些领域中,他都做出了重大的或开创性的贡献。希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的相信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。


希尔伯特的《几何基础》(1899)是公理化思想的代表作,书中把欧几里得几何学加以整理,成为建立在一组简单公理基础上的纯粹演绎系统,并开始探讨公理之间的相互关系与研究整个演绎系统的逻辑结构。1904年,又着手研究数学基础问题,经过多年酝酿,于二十世纪二十年代初,提出了如何论证数论、集合论或数学分析一致性的方案。他建议从若干形式公理出发将数学形式化为符号语言系统,并从不假定实无穷的有穷观点出发,建立相应的逻辑系统。然后再研究这个形式语言系统的逻辑性质,从而创立了元数学和证明论。希尔伯特的目的是试图对某一形式语言系统的无矛盾性给出绝对的证明,以便克服悖论所引起的危机,一劳永逸地消除对数学基础以及数学推理方法可靠性的怀疑。希尔伯特的著作有《希尔伯特全集》、《几何基础》、《线性积分方程一般理论基础》等,与其他合著有《数学物理方法》、《理论逻辑基础》、《直观几何学》、《数学基础》。


——传世佳言——


当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可理解。这时便想,是否可以将问题简化些呢?往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。